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Binary mixtures of magnetic fluids

W. Fenz and R. Folk
Institute for Theoretical Physics, Linz University, A-4040 Linz, Austria

~Received 17 October 2002; published 27 February 2003!

We study a binary mixture of a van der Waals fluid and a ferromagnetic fluid at zero magnetic field on the
basis of the mean field Ising fluid model and the van der Waals theory with quadratic mixing rules. Depending
on three reduced parameters, the phase diagram shows a surface of magnetic phase transitions and lines of
tricritical points, critical end points, and magnetic consolute points. First-order phase transition surfaces and
critical lines are calculated numerically. For the line of tricritical points, which can occur in two different
topologies, an analytic expression is derived. All higher-order lines and coexistence surfaces are visualized in
three-dimensionalx, T, p andj, T, p diagrams, wherej is a mapping ofD, the conjugated field of the mole
fraction x, on the unit interval.

DOI: 10.1103/PhysRevE.67.021507 PACS number~s!: 05.70.Fh, 82.60.Lf, 64.60.2i, 64.60.Kw
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I. INTRODUCTION

The investigation of the global phase behavior of bina
mixtures began with the work of van Konynenburg and Sc
in 1980 @1#, in which they calculated phase equilibria an
critical lines of van der Waals mixtures, and classified fi
distinct types~denoted as I–V! of phase diagrams, each co
responding to a certain region in the space of the two mixt
parameters. Later, more types were discovered by u
other theories such as the Ree equation of state@2#, the
simplified-perturbed-hard-chain theory~SPHCT! @3,4#, the
lattice gas model@5–8#, the Redlich-Kwong equation of stat
@9#, and the Carnahan-Starling-Redlich-Kwong equation
state@10#. Only systems that lie on the boundaries betwe
the regions of the global phase diagram can exhibit mu
critical points, e.g., symmetrical tricritical points@11,12# or a
van Laar point@13#.

In this paper, we deal with mixtures with one compone
being a magnetic fluid. This enlarges the thermodyna
space, and contrary to nonmagnetic binary mixtures mu
critical phase transitions become a common phenomenon
der certainthermodynamic conditions, not only under very
specific conditions for the interaction parameters inglobal
space.

As an example for such a system one might consi
He3-He4 mixtures at low temperatures. This quantum liqu
becomes superfluid along the concentration and pressure
pendentl line of second-order phase transitions. This ph
transition can be represented by theXY model for planar
magnets. At a certain concentration a tricritical point exi
and demixing sets in into a superfluid~5magnetic! He4 rich
phase and a normal liquid He3 rich phase@14#. At higher
temperature a concentration dependent line of plait point
present.

Following Hemmer and Imbro@15#, we use as a simple
one-dimensional model for a magnetic fluid the van d
Waals equation with an additional term including the squ
of the magnetizationm and the strength of the magnetic in
teractionam , together with the mean field equation of sta
of an Ising system. Such an Ising fluid undergoes liqu
vapor as well as paramagnetic-ferromagnetic phase tra
tions, and depending on the ratioRm of the magnetic and
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nonmagnetic interaction parametersam and a, it can have
three topologically different types of phase diagrams, two
which show a tricritical point. We would like to mention tha
Ising fluids may be mapped to symmetrical binary mixtur
@11#. In this way our mixture of an Ising fluid and a van d
Waals fluid may also be applicable to ternary mixtures.

The questions we wanted to address were if and for wh
parameters the mixture of an Ising and a van der Waals fl
exhibits a line of tricritical points, and what is the minim
mole fraction of the Ising fluid component necessary for
mixture to show tricriticality. Another topic of interest wa
whether critical lines with finite magnetization can occu
which would be tantamount to the coexistence of two m
netic phases in the mixture. In pure magnetic fluids, su
order-order critical points have been found in mean field a
modified mean field calculations of Heisenberg fluids, b
only for negative values ofRm @16,17#. We also restrict our-
selves to fluid phases since otherwise the phase diagr
would be rather complicated. Solid phases within mean fi
theory have been considered for classical Heisenberg fl
in Ref. @18#, extending the approach of@15#.

The paper is organized as follows: After defining t
model free energy and the condition of phase equilibria,
derive the equations to be solved for critical points, magne
critical points, and tricritical points. Combining the results
all these we are able to present the topology of the ove
phase diagram for different sets of model parameters. C
cluding with a short discussion we comment in Appendix
on the representation of the phase diagrams and in the
lowing appendixes we explain in more detail the calculat
of critical and tricritical lines and phase equilibria.

II. MODEL

Let us consider a binary mixture in the molar volumeV
consisting of a van der Waals fluid~fluid 1! and an Ising fluid
~fluid 2!. The mole fraction of the second component shall
denoted asx and its magnetization per particle asm. The
total magnetization per particle is accordinglymtot5xm. We
describe our system with a van der Waals like equation
state,
©2003 The American Physical Society07-1
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p~T,V,x,m!5
RT

V2b
2

a~x,m!

V2
, ~1!

where the attraction parametera contains the nonmagneti
attraction according to the quadratic mixing rule and
magnetic interaction of one component

a~x,m!5a11~12x!212a12x~12x!1S a221
1

2
amm2D x2,

~2!

and the size parameterb is assumed constant. In Eq.~2!, a11
and a22 denote the nonmagnetic interactions between p
ticles of the same kind,a12 the nonmagnetic interaction be
tween unlike particles, andam the magnetic interaction in th
Ising fluid. The factor 1/2 was chosen in order to be cons
tent with Ref.@15# for the case of the pure ideal Ising fluid
For the magnetization, the equation of state at zero magn
field reads

m5tanhS amxm

VRT D . ~3!

The corresponding molar Helmholtz free energy of the s
tem described by Eqs.~1! and ~3! with respect to the refer
ence state of an ideal unmixed gas with molar volumeV0

5b is given by

Arel~T,V,x,m!5A~T,V,x,m!2A0~T,V0!5xAs~T,m!

1RT@~12x!ln~12x!1x ln x#

2RT lnS V2b

b D2
a~x,m!

V
, ~4!

where

As~T,m!5RTS 12m

2
ln

12m

2
1

11m

2
ln

11m

2 D ~5!

is the entropy part of the free energy of the Ising fluid co
ponent. Following van Konynenburg and Scott@1#, we define
the reduced parametersz andL describing the nonmagneti
interactions in the mixture as

z5
a222a11

a111a22
, ~6!

L5
a1122a121a22

a111a22
. ~7!

In our case, however, a third parameter is needed to f
characterize the system, which is

Rm5
1

2

am

a22
, ~8!

denominating the ratio of magnetic and nonmagnetic in
action in the magnetic fluid component. For convenience,
introduce reduced variables by scaling the variables by
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rameters of component 2~normalizing the critical tempera
ture and pressure in absence of the magnetic interactio
1!,

Tr5
27

8

bRT

a22
5

27

4
Rm

bRT

am
, ~9!

pr5
27b2p

a22
, ~10!

Vr5
V

b
. ~11!

III. PHASE EQUILIBRIA

As a condition for the coexistence of two phasesa andb,
characterized byVa , xa , ma and Vb , xb , mb , at a tem-
peratureT0 and pressurep0 we take the equality of the
chemical potentials of the two componentsm1 and m2 in
both phases:

m1~T0 ,Va ,xa!5m1~T0 ,Vb ,xb!, ~12!

m2~T0 ,Va ,xa ,ma!5m2~T0 ,Vb ,xb ,mb!, ~13!

where the chemical potentials are derived from the He
holtz free energy~4! as

m1
rel52

2@a11~12x!1a12x#

V
1RT lnS b

12x

V2bD1RT
V

V2b
,

~14!

m2
rel52

2F S a221
1

2
amm2D x1a12~12x!G

V
1As~T,m!

1RT ln
bx

V2b
1RT

V

V2b
. ~15!

In addition to conditions~12! and~13!, the two phases mus
obey the thermodynamic and magnetic equations of state~1!
and ~3! at T0 andp0,

p~T0 ,Vi ,xi ,mi !5p0 , ~16!

mi5tanhS amximi

ViRT0
D , ~17!

wherei 5a, b. By solving the six equations~12!, ~13!, ~16!,
and ~17! for the six variables characterizing the coexisti
phases, one can find the first-order phase transition surf
in x, T, p space.

IV. CRITICAL LINES

In order to locate the critical points, plait points as well
consolute points, in the magnetic mixture, we consider
magnetic degrees of freedom as eliminated by the magn
equation of state. Thus we can follow the procedure use
a nonmagnetic binary fluid mixture. There the critical po
7-2



re

re

ro

is
hr
f

a-
ac

on

-

e
in
e
-

ri
la

re
ge
ly

id
b

f

ag-
rom

eters:

etic

ero

at
i-

g-
ain
s

cal
he
id
nted

of
r

to

e
nd
ition
re-
in
ace

.

BINARY MIXTURES OF MAGNETIC FLUIDS PHYSICAL REVIEW E67, 021507 ~2003!
is characterized by the onset of concavity in the Gibbs f
energy per molG as a function of the mole fractionx:

S ]2G

]x2 D
T,p,m

50, ~18!

S ]3G

]x3 D
T,p,m

50. ~19!

Expressing these conditions in terms of the Helmholtz f
energy yields

A2VA2x2AVx
2 50, ~20!

A3VA2x
2 23A2VxAVxA2x13AV2xAVx

2 2A3xA2VAVx50,
~21!

A3xA2V
2 23A2xVAVxA2V13Ax2VAVx

2 2A3VA2xAVx50,
~22!

where

AiV jx[S ] i 1 jA

] iV] j x
D

T,m

. ~23!

Note that Eq.~22! is not independent of the others. For ze
magnetization, equations~20!–~22! describe the critical
points in a conventional binary mixture. In that case, it
possible to eliminate the temperature and combine the t
equations to a single equation involving only powers ox
andV @1#.

In order to find critical points with nonzero magnetiz
tion, according to our philosophy, one has to take into
count that the magnetic equation of state~3! induces an ad-
ditional implicit dependency of the Helmholtz free energy
volume and concentration,

A5A@V,x,m~V,x!#, ~24!

making the derivatives in Eqs.~20!–~22! a lot more compli-
cated. In the resulting equations,T cannot be eliminated any
more and thus a system with four unknown variablesT, V, x,
andm consisting of Eqs.~20!, ~21! and the equations of stat
~1! and~3! has to be solved to locate a magnetic critical po
at a certain pressure. The full equations are given in App
dix B. We checked the location of the critical lines by com
paring with the results when calculating the phase equilib
for different pressures. In this way we avoided the calcu
tion of the next higher order of free energy derivatives.

V. SURFACE OF MAGNETIC PHASE TRANSITIONS

In zero magnetic field a liquid and also a binary mixtu
may order magnetically like a solid even for short ran
magnetic interaction. This has been demonstrated recent
the liquid alloy Co80Pd20 @19,20#; however, this fluid is rep-
resented by a Heisenberg fluid rather than an Ising flu
Evidence of a magnetic transition has been given also
computer simulations@16,21–23#. We consider the locus o
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points where a second-order phase transition from ferrom
netic to paramagnetic state occurs in mean field order. F
Eq. ~3! one can see that this happens for

V5
xam

RT
, Vr5

27

4

xRm

Tr
. ~25!

Equation ~25! defines a surface inx, T, V space. Via the
equation of state~1!, it transforms to a surface inx, T, p
space whose shape depends on the three mixture param

pr~Tr ,x!516Tr
2S 1

27Rmx24Tr
2

1

27Rm
2 x2

a~x,0!

a22
D .

~26!

There is for each concentration and pressure a magn
phase transition withTc going to zero in the limiting case
when the concentration of the magnetic liquid goes to z
sinceV stays finite (V.b). Contrary to what is known from
the solid magnetic solutions there is no percolation limit
finite concentrations@24#, so that this feature is not an art
fact of the mean field approximation.

Equation ~26! defines the surface of second-order ma
netic phase transitions, but it might be unstable for cert
values. There are two possibilities:~i! the surface become
unstable in a line of tricritical points, and/or~ii ! it intersects
another first-order phase transition surface in a line of criti
end points. In the first case the line of tricritical points is t
border line to the surface of first-order magnetic or liqu
phase transitions. Examples for both scenarios are prese
in the following sections.

VI. TRICRITICAL LINE

The pure Ising fluid shows a tricritical point for values
Rm*0.211. In order to find a tricritical point in the van de
Waals-Ising fluid mixture one would, in principle, have
solve the equation

S ]4G

]x4 D
T,p,m

50 ~27!

together with Eqs.~18! and ~19!. One can, however, mak
use of the fact that at the tricritical point the density a
concentration differences go to zero and the phase trans
becomes second order. Hence a tricritical point can be
garded as a critical point in the limit of zero magnetization
the ferromagnetic phase, or as a critical point on the surf
of magnetic phase transitions. In order to take the limitm
→0 in Eq.~20! it is necessary to replacem2 with the expan-
sion of Eq.~3! for small m,

m2;3S 12
VRT

xam
D53S 12

4VrTr

27xRm
D , ~28!

and let the volumeV approach the critical value given in Eq
~25!. Since the only variables left in Eq.~20! are thenx and
T, one can find the tricritical temperatureTt for arbitrary
7-3
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concentrationsx without making use of Eqs.~21! and ~22!.
The explicit expression forTt as a function ofx is

Tr
t ~x!5

27Rm

4 S x2A x3

A~x!2
B2~x!

C2
1

12x

D , ~29!

where

A~x!52
a~x,0!

am
1

3

2
x2, ~30!

B~x!5
1

2

dA~x!

dx
, ~31!

C5
dB~x!

dx
. ~32!

Equation ~29! inserted into the equation of the magne
phase transition surface~26! defines a line of tricritical points
in x, Tr , pr space.

Physical conditions define the range of existence of
line, namely, a real and positive value for the temperat
and a positive value for the pressure for concentration va
between zero and one. Moreover, the tricritical line mig
cross other phase transition surfaces ending in a tricrit
end point.

Formally the tricritical line starts in the phase diagram
x51 ~apart from values ofRm where instead of a tricritica
point a critical end point is present! at a temperature@15#

Tr
t ~1!5

27Rm

4 F12S 3

2
1

1

Rm
D 21/2G , ~33!

the tricritical temperature of the pure Ising fluid. On the oth
side atx50, which corresponds to the pure van der Wa
fluid, there is no tricritical point. Therefore the line of tric
ritical points must go into a direction perpendicular to t
concentration at some nonzero value ofx or at least become
unstable somewhere betweenx51 andx50. Let us have a
look at the behavior of the tricritical line in the limitV
→b. Then there are three possibilities:~i! for a finite tricriti-
cal temperature and finite concentration the pressure goe
infinity according to Eqs.~1! and ~25!, ~ii ! for x50 andTr

t

50 the pressure reaches a finite positive value, or~iii ! for a
finite concentration and finite tricritical temperature the pr
sure goes to zero.

Equation~25! tells us that ifV→b, the surface of mag-
netic phase transitions approaches the plane defined by

x5
bRT

am
, x5

4Tr

27Rm
. ~34!

Comparing this with Eq.~29!, we see that the tricritical poin
lies on that plane if the expression in the square root v
ishes. This happens forxÞ0 if x takes on the value
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x`
t 5

4 L1Rm~11z!

4 L13 Rm~11z!
~35!

and Tr`
t is given by Eq.~34! insertingx`

t . Thus if 0,x`
t

,1 we have case~i!, and the tricritical line escapes to infin
ity at these finite values for temperature and concentrat
This behavior is quite similar to the behavior of a demixi
line in a nonmagnetic mixture in the corresponding clas
@1,25,26#. For 0,x,x`

t , there will be no tricritical point
since the square root in Eq.~29! will become complex~see
Fig. 1, long-dashed line!.

If x`
t <0 or x`

t .1, however, the tricritical pressure wi
remain finite forx P@0,1#, and we have to consider case~ii !
or ~iii !. Now atx50 one always finds a tricritical pressure

pr
t ~x50!5 lim

x→0
pr

m@Tr
t ~x!,x#5227

12z

11z
, ~36!

which is negative sincezP] 21,1@ . This means that the tri-
critical pressure changes its sign at some 0,x0,1 and the
tricritical line becomes unstable@case~iii !, see Fig. 1, short-
dashed line#.

The only exception to Eq.~36! occurs for parameter val
ues wherex`

t is exactly zero, in which case

pr
t ~x50!5227

123z12L

11z
. ~37!

The value of this pressure can be positive for a suita
choice of the parametersL andz. Still, however, according
to Eq. ~29!, the tricritical temperature forx50 is zero, and
thus there is also in this case no tricritical point with fini
temperature in the pure van der Waals fluid@case~ii !, see
Fig. 1, solid line#. In the last two cases the tricritical lin
becomes unstable and ends in atricritical end point on a
first-order coexistence surface~see one example of such
case below!.

The set of parametersL, z, Rm for which x`
t is zero, form

a boundary in the three-dimensional global phase space
separates two distinct types of phase diagrams, one wi
line of tricritical consolute points and one with a line o
tricritical plait points. This surface, defined by the equatio

FIG. 1. Projection of the tricritical line on thex, pr plane for
systems withz50.5; Rm50.5; andL520.15 (x`

t 50.091; long-
dashed line!, L520.1875 (x`

t 50; solid line!, and L520.21
(x`

t 520.064; short-dashed line!.
7-4
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L52
Rm

4
~11z!, ~38!

is shown in Fig. 2.

VII. DIFFERENT TOPOLOGIES OF PHASE DIAGRAMS

We now present phase diagrams for special values of
model parameters. The idea behind the three-dimensi
figures is explained in Appendix A. We selected out of t
rich variety cases where different types of tricritical lin
appear.

A. Mixture with ideal Ising fluid

First we consider a mixture of a van der Waals fluid a
an ideal Ising fluid with pure magnetic interaction, i.e.,a22
50 anda1250, respectively,z521, L51, andRm5`. In
this case only the ratior[a11/am can vary. Of course, the
reduced variables~9! and ~10! cannot be used for such
system, instead we take for the reduced temperature an
reduced pressure

Tr5
bRT

am
, pr5

b2p

am
. ~39!

For these parameters, the magnetic surface is simply g
by Vr5x/Tr and the limiting value of the concentration an
temperature on the tricritical line in Eq.~35! becomes

x`
t 5

114r

314r
, Tr`

t 5
114r

314r
, ~40!

which lies between 1/3 and 1, corresponding to the limit
cases of vanishing attractive interaction in the van der Wa
fluid and the ideal Ising fluid, respectively. Hence, the tr
ritical line starts at the tricritical point of the ideal Ising flui

FIG. 2. Plot of the boundary surface inz, L, Rm space separat
ing the two types of behavior of the tricritical line. For parame
values above the surface, the tricritical line has the character
consolute line.
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and approaches infinite pressure atx5x`
t andT5Tr`

t . The
character of the tricritical line crosses over from a gas liq
critical point for the pure ideal Ising fluid to a demixin
critical point in the mixture. Below the tricritical tempera
ture, the mixture forms two phases, a paramagnetic ph
with a low concentration and a ferromagnetic phase wit
higher concentration of the ideal Ising fluid. Note, howev
that in the whole crossover regime the densities of the
phases below the tricritical temperature are also differe
From the critical point in the pure van der Waals fluid
critical line originates, which also takes on the character o
consolute line in the mixture but ends on the coexiste
surface of paramagnetic and ferromagnetic phases in a c
cal end point. From there, a three-phase line~line of triple
points! continues to zero pressure and temperature.

Figures 3 and 4 arex, Tr diagrams of a mixture withr
50.5, x`

t 5Tr`
t 50.6 at different pressures showing the pha

coexistence curves, critical and tricritical points, and the l

r
a

FIG. 3. x, Tr diagram of a mixture withz521, L51, Rm

5`, and r 50.5 at pr50.05. CP, critical point; TCP, tricritical
point; full lines, first-order phase transitions; dashed line, magn
phase transitions.

FIG. 4. x, Tr diagram of a mixture withz521, L51, Rm

5`, andr 50.5 atpr50.15. TCP, tricritical point; full lines, first-
order phase transitions; dashed line, magnetic phase transition
7-5
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of magnetic phase transitions. Atpr50.05 one can see two
consolute points, a critical and a tricritical one, while atpr
50.15, well above the pressure of the critical end point, o
the tricritical consolute point is left. These diagrams are cr
sections of the whole phase diagram~see Fig. 5! in x, Tr , pr
space including the surface of magnetic phase transit
~light gray! and the phase coexistence surfaces~dark gray!.
The liquid phase coexistence surfaces penetrate each
defining coexistence of three phases. In Fig. 6, we have
placed the variablex by its conjugated field variableD
5m12m2. SinceD takes on all values from2` to 1`, as
x varies between 0 and 1, we did not useD itself as a coor-
dinate in the phase diagram, but rather

FIG. 5. x, Tr , pr diagram of a mixture withz521, L51,
Rm5`, and r 50.5. Thick lines, liquid-vapor curves of the pur
substances; thin lines, isobaric curves on the first-order surf
dotted line, tricritical line; dashed lines, critical lines.

FIG. 6. j, Tr , pr diagram of a mixture withz521, L51,
Rm5`, and r 50.5. Thick lines, liquid-vapor curves of the pur
substances; thin lines, isobaric curves on the first-order surf
dotted line, tricritical line; dashed lines, critical lines.
02150
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j[
1

11e2D/RT
, ~41!

which lies between 0 and 1 forD between2` and1`. j
50 corresponds to the pure component 2 (x51), j51 to
the pure component 1 (x50). In a j, Tr , pr diagram, the
phase coexistence surfaces, which enclose the two-phase
ume in thex, Tr , pr diagram, form interfaces between th
coexisting phases, sincej is continuous at a first-order phas
transition. The two coexistence surfaces~dark gray!, one
with a jump in magnetization and one separating two n
magnetic phases, are bounded by the liquid-vapor curves
critical line, and the tricritical line and meet along a line
triple points. At the tricritical line the paramagnetic
ferromagnetic phase transition becomes second order,
the coexistence surface passes into the surface of mag
phase transitions~light gray!.

B. General case

In the general case there are many possibilities for diff
ent topologies of the phase diagram depending on
strength of the magnetic interaction parameter. For the Is
fluid three different types of phase diagrams have been fo
@15# for increasingRm : ~i! without a tricritical point but a
critical end point and a gas liquid critical point;~ii ! with a
critical end point, a tricritical point, and a gas liquid critic
point; and ~iii ! with a tricritical point only ~like the ideal
Ising fluid!. The nonmagnetic parameters, on the other ha
define five different classes found by van Konynenburg a
Scott @1#. We consider a van der Vaals mixture of type I
their classification. This class constitutes the most sim
topology and is characterized by a line of plait points~gas
liquid critical points! connecting the pure fluids, no demixin
transition appears. In the following we discuss three differ
topologies showing tricritical lines and the appearance o
critical line in the magnetic phase.

We are interested in the effect of adding a magnetic in
action to one component of the mixture. At saturation,m
51, we recover a binary mixture with changed paramet
L andz, shifting the mixture to type III~containing a line of
consolute points!. Thus we expect interesting effects in ze
magnetic field induced by the magnetic interaction and
existence of a ferromagnetic phase.

1. Tricritical consolute point line and plait point line

We choose the parametersz50.5 andL520.05 and add
a weak magnetic interaction to the second component w
the ratioRm50.2. Although there is no tricritical point in the
pure Ising fluid for this value ofRm , the phase diagram
shows a tricritical line starting at a certain concentration in
tricritical end pointon the first-order surface of liquid-vapo
phase transitions. Aspr goes to infinity, the tricritical line
reaches the limiting concentrationx`

t 50.1429 and the tric-
ritical temperatureTr`

t 50.1929. Such a topology is quit
similar to He3-He4 mixtures, with differences for low con
centrations.

e;

e;
7-6
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Figures 7–9 are examples ofx, Tr diagrams at increasing
pressures. Starting from the situation where only one crit
point and a triple point are present, Fig. 7, a tricritical po
appears in addition to the critical point and the triple po
disappeared~Fig. 8!. Increasing the pressure further one fin
a situation where a tricritical point and two different critic
points exist ~not shown! and finally for pressures larg
enough only the tricritical point remains~see Fig. 9!. These
cross sections should be compared with Fig. 10 where
whole phase diagram inx, Tr , pr space is shown. Again th
phase diagram in field space,j, Tr , pr , ~see Fig. 11! shows
two transition surfaces: the first-order gas-liquid phase tr
sition surface~dark gray in front! ending in a line of plait
points and the surface of magnetic phase transitions con
ing of a second-order part~light gray! and a first-order par
corresponding to liquid-liquid transitions~dark gray! sepa-

FIG. 7. x, Tr diagram of a mixture withz50.5, L520.05, and
Rm50.2 atpr50.5. CP, critical point; CEP, critical end point; fu
lines, first-order phase transitions; dashed line, magnetic phase
sitions.

FIG. 8. x, Tr diagram of a mixture withz50.5, L520.05, and
Rm50.2 at pr50.8. CP, critical point; TCP, tricritical point; full
lines, first-order phase transitions; dashed line, magnetic phase
sitions.
02150
al
t
t

e

-

st-

rated by the tricritical line. These surfaces intersect alon
triple line ~the dark ones! and along a line of critical end
points ~the light gray and the dark one in front!. These two
lines and the tricritical line meet in the tricritical end poi
~in the figure this is occluded by the gas-liquid surface
front!.

2. Consolute point line within the magnetic phase
and tricritical plait point line

In order to present an example where the tricritical li
remains below a finite value of pressure we choose the
rameter valuesz50.5, L520.25, andRm50.5. In this case
the value ofx`

t is negative, namely,x`
t 520.2. From thex,

Tr , pr diagram~Fig. 12! we can see that there is no tricritica
point at high pressures, but instead a line of consolute po
within the magnetically ordered phase~we call such a point

an-

an-

FIG. 9. x, Tr diagram of a mixture withz50.5, L520.05, and
Rm50.2 atpr52. TCP, tricritical point; full lines, first-order phas
transitions; dashed line, magnetic phase transitions.

FIG. 10. x, Tr , pr diagram of a mixture withz50.5,
L520.05, andRm50.2. Thick line, liquid-vapor curve of the pure
Ising fluid; thin lines, isobaric curves on the first-order surfac
dotted line, tricritical line; dashed lines, critical lines.
7-7
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magnetic consolute point! continues till infinite pressure, ap
proachingx`50.499 andTr`50.2814. Thus demixing is in
duced by the magnetic interaction and the finite magnet
tion of the mixture. Both phases in which the decomposit
takes place are magnetically ordered.

The x, Tr diagram again shows immiscibility at low tem
peratures~Fig. 13!, a tricritical point~Fig. 14!, and in a nar-
row pressure range two tricritical points and a magnetic c
solute point~Fig. 15!. Above a maximum tricritical pressur
pmax

t 56.9847, only the magnetic consolute point remai
The magnetic phase transition line ends on the coexiste
curve in a critical end point.

The j, Tr , pr-phase diagram~Fig. 16! summarizes again
in a compact way the whole variety of phase lines and s

FIG. 11. j, Tr , pr diagram of a mixture withz50.5,
L520.05, andRm50.2. Thick lines, liquid-vapor curves of th
pure substances; thin lines, isobaric curves on the first-order
face; dotted line, tricritical line; dashed lines, critical lines.

FIG. 12. x, Tr , pr diagram of a mixture withz50.5,
L520.25, andRm50.5. Thick lines, liquid-vapor curves of th
pure substances; thin lines, isobaric curves on the first-order
face; dotted line, tricritical line; dashed lines, critical lines.
02150
a-
n

-
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ce
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faces present in this topology. The first-order gas liquid s
face~in front! ending in aline of tricritical plait points con-
tinues as a first-order demixing surface, bounded by aline of
magnetic consolute points, at higher pressures. The magne
phase transition surface intersects this demixing surf
along a line of critical end points at values ofj near 1. This
line meets the tricritical line in a tricritical end point, whic
is connected by a short line of triple points to the magne
critical end point, where the line of magnetic consolu
points hits the surface of first-order phase transitions. Th
features are not visible in Fig. 16 but in Fig. 17 they a
illustrated schematically.

3. Consolute point line within the magnetic phase, a tricritical
plait point line with two tricritical end points,

and a plait point line

Even more critical points may exist at the same press
This happens for the case of mixing a van der Waals fl
with a slightly different~smaller strength of magnetic inter
action! Ising fluid. For the parametersz50.5, L520.12,
andRm50.2, it is even possible to have two tricritical pla

r-

r-

FIG. 13. x, Tr diagram of a mixture withz50.5, L520.25,
andRm50.5 atpr52.5. Full lines, first-order phase transitions.

FIG. 14. x, Tr diagram of a mixture withz50.5, L520.25,
andRm50.5 atpr55.5. TCP, tricritical point; full lines, first-order
phase transitions; dashed line, magnetic phase transitions.
7-8
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BINARY MIXTURES OF MAGNETIC FLUIDS PHYSICAL REVIEW E67, 021507 ~2003!
points, a plait point, and a consolute point in the magne
phase at the same pressure~see Fig. 18!.

The corresponding three-dimensional phase diagram~Fig.
19! shows a tricritical line that separates the surface
second-order magnetic phase transitions from first-order
uid phase transitions. No tricritical point is present atx51
and x50; instead, the tricritical line bends over from on
tricritical end point to another one at lower concentratio
One of these tricritical end points lies on the gas liquid fir
order phase transition surface, the other one on the first-o
demixing phase transition surface. Demixing takes place
the ferromagnetic phase as in the example mentioned be

VIII. DISCUSSION

We have investigated mixtures of a van der Waals fl
and an Ising fluid and have found that besides the us

FIG. 15. x, Tr diagram of a mixture withz50.5, L520.25,
and Rm50.5 at pr56.75. TCP, tricritical point; MCP, magneti
consolute point; CEP, critical end point; full lines, first-order pha
transitions; dashed line, magnetic phase transitions.

FIG. 16. j, Tr , pr diagram of a mixture withz50.5,
L520.25, andRm50.5. Thick lines, liquid-vapor curves of th
pure substances; thin lines, isobaric curves on the first-order
face; dotted line, tricritical line; dashed lines, critical lines.
02150
c
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re.

d
alcritical lines and coexistence surfaces such systems ex
magnetic critical lines and tricritical lines, whose existen
and shape depend on the three mixture parametersz, L, and
Rm . The tricritical line can either have the character of
consolute line and continue until infinite pressure, or it sta
at finite pressure and ends on a coexistence surface. In
case it has the character of a plait point line. Moreover, th
is still immiscibility at higher pressures, and a line of ma
netic consolute points extends to infinite pressure.

These findings within the mean field theory will be co
roborated by further investigations using Gibbs ensem
Monte Carlo simulations@27,28#. Fluctuation effects are ex
pected to change shape and location of transition lines
surfaces. Both magnetic and liquid phase transitions sh
critical exponents different from mean field exponents. T
has also been proven for the magnetic liquid@29#.
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e
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FIG. 17. Schematicj, Tr , pr diagram of a mixture withz
50.5, L520.25, andRm50.5, the region nearj51 is magnified.
Thick lines, liquid-vapor curves of the pure substances; thin lin
lines of triple points; thick dotted line, tricritical line; thin dotte
line, line of critical end points; dashed lines, lines of critical poin
TCP, tricritical point; MCEP, magnetic critical end point; TCE
tricritical end point; CP, critical point; CEP, critical end point.
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APPENDIX A: REPRESENTATION
OF THE PHASE DIAGRAMS

We present the phase diagrams of the magnetic liq
mixtures in two ways. First we show the phase diagram
the space of the usual physical thermodynamic variab
which are pressure, temperature, and concentration. Sinc
concentration is a density and not a field, the character of
demixing transitions is seen as a multivalued surface of
two fields. These diagrams are accompanied with the u
two-dimensional constant pressure sections. In fact, the s
of these sections builds up the three-dimensional diagra

If we choose all three thermodynamic fields as variab
the different phases are separated by single valued surf
in the thermodynamic field space. This illustrates, in o

FIG. 18. x, Tr diagram of a mixture withz50.5, L520.12,
and Rm50.2 at pr50.6. CP, critical point; TCP, tricritical point
MCP, magnetic consolute point; CEP, critical end point; full line
first-order phase transitions; dashed line, magnetic phase tr
tions.

FIG. 19. x, Tr , pr diagram of a mixture withz50.5,
L520.12, andRm50.2. Thick lines, liquid-vapor curves of th
pure substances; thin lines, isobaric curves on the first-order
face; dotted line, tricritical line; dashed lines, critical lines.
02150
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opinion, the overall picture of the different phases mo
clearly and seems to be appropriate for theoretical consi
ations in the sense of Griffith and Wheeler@30#. These sur-
faces join together in special lines, which might be lines
triple points in the case first-order transition surfaces mee
the case where a first-order transition surface meets a su
of second-order transitions we find either lines of critical e
points or lines of tricritical points if it happens that the su
face of second-order phase transitions meets the coexist
surface in the border line of critical points.

APPENDIX B: MAGNETIC CRITICAL LINES

In the following equations we make use of the dimensio
less quantities:

T̄[
4

27Rm
Tr , ~B1!

y[~12m2!21, ~B2!

a[S 1

Rm
1m2D x21

2

Rm

12L

11z
x~12x!1

1

Rm

12z

11z
~12x!2,

~B3!

b[
1

2

da

dx
, ~B4!

g[
db

dx
, ~B5!

h[
T̄

2
@ ln~11m!2 ln~12m!#2

2xm

Vr
, ~B6!

«[VrT̄2x~12m2!, ~B7!

u[~226m214m4!«22x~12m2!2m2, ~B8!

z[x~12x!, ~B9!

w[122x. ~B10!

,
si-

FIG. 20. Plot of the curve@ ln l1* (Vr),ln l2* (Vr)# for z50.5,
L520.05, Rm50.2, pr50.9, Tr50.8. Along the dashed part o
the curve the magnetization is finite. The self-intersection points
indicated with dots.

r-
7-10



on

BINARY MIXTURES OF MAGNETIC FLUIDS PHYSICAL REVIEW E67, 021507 ~2003!
The derivatives of the magnetization with respect to the c
centration are then given by

mx5
1

«
~12m2!m, ~B11!

m2x5
mu

«3
. ~B12!
n

-

a

qs
d

q.

tra

02150
-Now Eq. ~20! with finite magnetization yields

F1~ T̄,Vr ,x,m![@~Vr21!2~a1x3mmx!2Vr
3T̄#

3@gz2VrT̄2zVrhmx#2~b2xVrhmx!
2z

3~Vr21!250, ~B13!

and from Eq.~21! we obtain
F2~ T̄,Vr ,x,m![†$3a1x3@6mmx1x~mx
21mm2x!#%~Vr21!322T̄Vr

4
‡@z~g2Vrhmx!2T̄Vr #

223z$2b1x2

3@5mmx1x~mx
21mm2x!#%~b2Vrxhmx!@z~g2Vrhmx!2T̄Vr #~Vr21!313z2$g1x@4mmx2~ T̄Vry22x!

3mx
22Vrhm2x#2Vrhmx%~b2Vrxhmx!

2~Vr21!32$T̄Vrw2z2@Vrhm2x24mmx1~ T̄Vry22x!mx
2#%

3@~a1x3mmx!~Vr21!22T̄Vr
3#~b2Vrxhmx!~Vr21!50. ~B14!
n

was
At a particular pressurep0, a critical point in the ferro-
magnetic phase can be found by solving the four equatio

F1~ T̄,Vr ,x,m!50, ~B15!

F2~ T̄,Vr ,x,m!50, ~B16!

m5tanhS xm

VrT̄
D , ~B17!

pr~ T̄,Vr ,x,m!5p0 , ~B18!

for the variablesT̄, Vr , x, m. Only the thermodynamic equa
tion of state~B18! can be solved analytically forx, the other
equations have to be solved numerically, which requires
propriate starting values forT̄, Vr , andm to be known.

The numerical function that was applied to solve E
~B15!–~B17! uses a modification of the Powell hybri
method for nonlinear algebraic equations@31#.

APPENDIX C: TRICRITICAL LINE

The equation for the tricritical line is obtained from E
~B13! when the magnetization tends to zero andT ap-
proaches the critical temperature of the magnetic phase
sition given by Eq.~25!, which is

T̄c5
x

Vr
~C1!

in reduced quantities. For the termmmx , we have

lim
m→0
T̄→T̄c

mmx5 lim
m→0
T̄→T̄c

m2

VrT̄2x~12m2!
. ~C2!
s

p-

.

n-

Substitutingm2 with the expansion of the magnetic equatio
of state,

m2;3S 12
VrT̄

x
D , ~C3!

we get as a result

lim
m→0
T̄→T̄c

mmx5
3

2x
. ~C4!

Similarly, we obtain forhmx ,

lim
m→0
T̄→T̄c

hmx5 lim
m→0
T̄→T̄c

S T̄

2
@ ln~11m!2 ln~12m!#2

2xm

Vr
Dmx

5S T̄c2
2x

Vr
D lim

m→0
T̄→T̄c

mmx52
3T̄c

2x
. ~C5!

Substituting Eqs.~C4! and~C5! into Eq.~B13! and replacing
the volume with the critical volume from Eq.~25! leads to
Eq. ~29! for the tricritical temperature.

APPENDIX D: PHASE EQUILIBRIA

Phase equilibria were calculated from Eqs.~12! and~13!,
where the dimensionless relative activityl i* , defined as

ln l i* 5
m i

rel

RT
, i 51,2, ~D1!

was used instead of the relative chemical potentials. This
done by solving Eq.~16!, which is quadratic inx, and sub-
stituting the solutionxi(Vi ,mi) into Eqs.~12! and ~13! and
7-11
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Eq. ~17!. Finding the solution to Eqs.~12! and ~13! is then
equivalent to finding a self-intersection point of a curve
the lnl1* , ln l2* plane, parametrized by the volumeVr .
Along this curve, the magnetization varies as a function
Vr according to Eq.~17! between 0 and 1. Figure 20 show
oc

h

h

an

02150
f

an example of such a curve with two self-intersections c
responding to a nonmagnetic gas-liquid and a paramagn
ferromagnetic liquid-liquid phase transition. Equations~12!
and ~13! were again solved via the Powell hybrid metho
@31#.
ev.

ek,

.

ell,

da

a
,
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